
Seiler’s Interpolation for Evaluating Polynomial Curves
Cem Yuksel

cem@cemyuksel.com
Cyber Radiance

USA

e2
e1

b0

s1

s2

b1

b2

b3
b03

C(t)

s12

d2
d12

d1

Figure 1: An illustration of Seiler’s interpolation, evaluating a cubic Bézier curve C(𝑡) at 𝑡 = 0.6 using only 3 linear interpolations that combine
the end points b0 and b3 with Seiler points s1 and s2, which can be precomputed using the internal Bézier control points b1 and b2.

ABSTRACT
Seiler’s interpolation allows evaluating polynomial curves, such
as Bézier curves, with a small number of linear interpolations. It
is particularly effective with hardware linear interpolation used in
GPU texture filtering. We compare it to the popular alternatives,
such as de Casteljau’s algorithm, and present how it extends to
higher-degree polynomials.

ACM Reference Format:
Cem Yuksel. 2024. Seiler’s Interpolation for Evaluating Polynomial Curves.
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Talks (SIGGRAPH Talks ’24), July 27 - August 01, 2024. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3641233.3664331

1 INTRODUCTION
Polynomial curves are everywhere in computer graphics. They are
often evaluated using Bézier control points, but they can also be
evaluated using polynomial coefficients. Another common alter-
native is de Casteljau’s algorithm, which purely relies on linear
interpolations and can be particularly advantageous when some of
these linear interpolations can be performed in hardware (such as
cubic texture filtering on the GPU).

We present Seiler’s interpolation, which can evaluate a cubic
Bézier curve with only 3 linear interpolations (i.e. lerps), as op-
posed to 6 needed by de Casteljau’s algorithm. The original form

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Talks ’24, July 27 - August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0515-1/24/07
https://doi.org/10.1145/3641233.3664331

of Seiler’s interpolation was presented by Larry Seiler and his col-
leagues [Lin et al. 2021] for slightly modifying the GPU hardware
to support hardware-accelerated higher-order texture filtering. We
discuss Seiler’s interpolation in a more general context and compare
it against other methods for evaluating cubic Bézier curves. We
include its original form using difference terms, a pure lerp version,
and an alternative ordering of computation to reduce the number of
micro-operations using offsets. We primarily concentrate on cubic
Bézier curves, as they are the most common ones in graphics, but
we also include formulations of quadratic curves and higher-degree
polynomials than cubics.

2 BACKGROUND
Let C(𝑡) represent a polynomial parametric curve of degree 𝑑 with
a parameter value 𝑡 ∈ [0, 1]. Given Bézier control points b𝑖 , where
𝑖 ∈ {0, 1, · · · , 𝑑}, we can evaluate it using Bernstein polynomials.
For a cubic curve, we can write

C(𝑡) = (1 − 𝑡)3 b0 + 3(1 − 𝑡)2𝑡 b1 + 3(1 − 𝑡)𝑡2 b2 + 𝑡3 b3 . (1)

A computationally more efficient alternative is its polynomial
form after its coefficients p𝑖 are pre-computed. For a cubic curve,
we can write p0 = b0, p1 = 3(b1 − b0), p2 = 3(b0 − 2b1 + b2), and
p3 = −b0 + 3b1 − 3b2 + b3, resulting

C(𝑡) = 𝑡3 p3 + 𝑡2 p2 + 𝑡 p1 + p0 . (2)

de Casteljau’s algorithm uses linear interpolation functions
L(a, b, 𝑡) = (1 − 𝑡) a + 𝑡 b. For a cubic curve, first calculates three
intermediate points b01 = L(b0, b1, 𝑡), b12 = L(b1, b2, 𝑡), and
b23 = L(b2, b3, 𝑡). Then, it interpolates them as b02 = L(b01, b12, 𝑡)
and b13 = L(b12, b23, 𝑡). Finally, the sixth interpolation forms the
results C(𝑡) = L(b02, b13, 𝑡).

https://doi.org/10.1145/3641233.3664331
https://doi.org/10.1145/3641233.3664331


SIGGRAPH Talks ’24, July 27 - August 01, 2024, Denver, CO, USA Cem Yuksel

Table 1: Multiplications𝑀 and additions 𝐴 needed for evaluating cubic polynomial curves with different formulations in 𝑛 dimensions.

Polynomial Bernstein Poly. de Casteljau Seiler (diff. terms) Seiler (pure lerp) Seiler (offsets)
All micro-ops 𝒏(3𝑴 + 3𝑨) 𝑛(4𝑀 + 3𝐴) + 6𝑀 𝑛(12𝑀 + 6𝐴) 𝑛(5𝑀 + 3𝐴) +𝑀 𝑛(6𝑀 + 3𝐴) +𝑀 𝑛(4𝑀 + 3𝐴) +𝑀

After initial lerps — — 𝑛(6𝑀 + 3𝐴) 𝒏(𝑴 +𝑨) +𝑴 𝑛(2𝑀 +𝐴) +𝑀 𝑛(2𝑀 +𝐴)

3 SEILER’S INTERPOLATION FOR CUBICS
The original form of the Seiler’s interpolation [Lin et al. 2021] for
cubics uses a lerp of the endpoints b03 = L(b0, b3, 𝑡) and a lerp of
two difference terms, d1 and d2, using d12 = L(d1, d2, 𝑡), where

d1 = 3(b1 − b0) − (b3 − b0) (3)
d2 = 3(b2 − b3) − (b0 − b3) . (4)

The final position on the curve is evaluated by adding a portion
of the interpolated difference terms to the interpolated endpoints,
such that C(𝑡) = b03 + (1 − 𝑡)𝑡 d12. This is illustrated in Figure 1.

To achieve a pure lerp form, we define two Seiler points
s1 = d1 + b0 and s2 = d2 + b3. The second lerp is performed using
these Seiler points as s12 = L(s1, s2, 𝑡). Then, the final step turns
into a third lerp, such that C(𝑡) = L

(
b03, s12, (1 − 𝑡)𝑡

)
.

For reducing the number of operations, we can first compute
offset points e1 = b0 + (1 − 𝑡)𝑡d1 and e2 = b3 + (1 − 𝑡)𝑡d2. Then,
the point on the curve becomes a lerp of these offset points
C(𝑡) = L(e1, e2, 𝑡), as shown in Figure 1. We can also evaluate off-
set points with e1 = L

(
b0, s1, (1 − 𝑡)𝑡

)
and e2 = L

(
b3, s2, (1 − 𝑡)𝑡

)
,

forming another alternative that only uses lerps.
Table 1 lists the number of micro-ops needed for different meth-

ods. The polynomial form has the fewest number of micro-ops and
it can also benefit from fused-multiply-add operations. On the other
hand, when implemented on the GPU, interpolation-based methods
can utilize the texture filtering hardware to perform the initial lerps
in hardware while reading the coefficients from a texture. After
these initial lerps, Seiler’s interpolation involves fewer operations
than the others. Also, the initial lerps of Seiler’s interpolation can
be performed in parallel, which can provide savings in computation
time even when performing lerps in hardware is not an option.

Piecewise cubic curves with𝑚 pieces require storing 4𝑚 coeffi-
cients in polynomial form, but the other methods can store 3𝑚 + 1
points, as the positions of the endpoints are common (i.e. b0 for
a piece matches b3 of the previous piece). Consecutive pieces do
not necessarily share the same Seiler points where they join, even
when the curve has𝐶2 continuity. Therefore, splitting Bézier curves
results in two different Seiler points on either side of the split.

One exception is cubic Catmull-Rom splines with uniform pa-
rameterization [Yuksel et al. 2011], where the first Seiler point (s1)
of a piece matches the second Seiler point of the previous piece
(s2). Thus, the difference terms of consecutive pieces also match.
Therefore, such curves can be stored in Seiler’s interpolation form
using only 2𝑚 + 2 points. With other parameterizations of Catmull-
Rom curves, the directions of the difference terms match where
pieces join, but not their magnitudes, which vary by the ratios of
parameter lengths of the consecutive pieces.

4 GENERAL POLYNOMIAL CURVES
In addition to cubics, Lin et al. [2021] also includes a formulation for
quadratics, though with a different notation than ours. A quadratic

Bézier has a single difference term d1, corresponding to two Seiler
points s1 = b0 + d1 and s2 = b2 + d1.

For polynomial curves with degree 𝑑 , Seiler’s interpolation can
be written in a recursive form, such that

C(𝑡) = L(b0, b𝑑 , 𝑡) + (1 − 𝑡)𝑡 D1 (𝑡) , where (5)

D𝑖 (𝑡) =

0 , if 2𝑖 = 𝑑 + 1
d𝑖 , if 2𝑖 = 𝑑
L(d𝑖 , d𝑑−𝑖 , 𝑡) + (1 − 𝑡)𝑡 D𝑖+1 (𝑡) , otherwise.

(6)

The pure lerp formulation replaces the additions above with
lerp using Seiler points s𝑖 = s𝑖−1 + d𝑖 and s𝑑−𝑖 = s𝑑−𝑖+1 + d𝑑−𝑖
for 𝑖 ∈ {1, · · · , ⌊𝑑/2⌋}, where s0 = b0 and s𝑑 = b𝑑 . The difference
terms can be computed from the Bézier control points b𝑖 , using

d1 = 𝑑 (b1 − b0) − (b𝑑 − b0) (7)
d𝑑−1 = 𝑑 (b𝑑−1 − b𝑑 ) − (b0 − b𝑑 ) (8)

d2 =
(
𝑑

2

)
(b2 − b1) −

(
𝑑 − 2
2

)
(b1 − b0)

− (𝑑 − 3) (b𝑑−1 − b𝑑 ) − 3(b𝑑−1 − b1) (9)

d𝑑−2 =
(
𝑑

2

)
(b𝑑−2 − b𝑑−1) −

(
𝑑 − 2
2

)
(b𝑑−1 − b𝑑 )

− (𝑑 − 3) (b1 − b0) − 3(b1 − b𝑑−1) . (10)
These formulas are sufficient for generating the difference terms
for polynomials up to (and including) degree 5 (i.e. 𝑑 ≤ 5).

For a polynomial curve of degree 𝑑 with 𝑑 + 1 control points,
Seiler’s interpolation uses 𝑑 lerps, ⌈𝑑/2⌉ of which can be computed
in parallel, as they interpolate disjoint pairs of difference terms (d𝑖
and d𝑑−𝑖 ) or the endpoints (b0 and b𝑑 ).

We can reduce the number of operations with offsets and a single
lerp at the end, using d0 = b0, d𝑑 = b𝑑 , and

C(𝑡) = L
(
E+0 (𝑡), E

−
𝑑
(𝑡), 𝑡

)
, where (11)

E±𝑖 (𝑡) =
{
d𝑖 , if 𝑑 − 1 ≤ 2𝑖 ≤ 𝑑 + 1
d𝑖 + (1 − 𝑡)𝑡 E±

𝑖±1 (𝑡) , otherwise. (12)

5 CONCLUSION
We have presented Seiler’s interpolation for evaluating polynomial
curves with three variants, including quadratic, cubic, and higher-
order polynomials, extending the original formulation of Lin et al.
[2021]. Considering the broad use of polynomial curves in graphics,
various applications might benefit from the alternative computation
and storage benefits of these variants. Future work can investigate
the difference term rules for higher-order polynomials (𝑑 ≥ 6).

REFERENCES
Daqi Lin, Larry Seiler, and Cem Yuksel. 2021. Hardware Adaptive High-Order Interpo-

lation for Real-Time Graphics. Computer Graphics Forum (Proceedings of HPG 2021)
40, 8 (2021), 1–16. https://doi.org/10.1111/cgf.14377

Cem Yuksel, Scott Schaefer, and John Keyser. 2011. Parameterization and Applications
of Catmull-Rom Curves. Computer Aided Design 43, 7 (2011), 747–755. https:
//doi.org/10.1016/j.cad.2010.08.008

https://doi.org/10.1111/cgf.14377
https://doi.org/10.1016/j.cad.2010.08.008
https://doi.org/10.1016/j.cad.2010.08.008

	Abstract
	1 Introduction
	2 Background
	3 Seiler's Interpolation for Cubics
	4 General Polynomial Curves
	5 Conclusion
	References

